Course detail
Materials for Medical Applications
FCH-MC_MMAAcad. year: 2024/2025
Polymers are an important part of the biomaterial used in medicine, especially as parts of medical devices, biosensors, implants, drug or cell carriers. The subject summarizes the current knowledge about the synthesis of biomedical polymers, including their modification, copolymerization, functionalization, Self-organizing processes and characterization. Emphasis is placed on the properties of hydrogels and biodegradable polymers usable in medicine, with a view to testing their biocompatibility, stability and bioactivity in living organisms. Part of it is devoted to methods of preparing scaffolds for tissue engineering and biomaterials for bone, replacement overview, tendons, cartilage, skin, nervous and cardiovascular systems. The subject deals also in a composite polymer material containing (nano) fibers or (nano) particles, their properties and applications in medicine.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
Active participation in lessons including seminar work (30%).
It is not, but the lectures are recommended.
Aims
Students will be able to choose a suitable biomaterials, or any combination thereof, for defined medical applications, design methods of synthesis and preparation of (bio) polymer characterization and testing, including methods of in vitro and in vivo for the intended application.
Study aids
Prerequisites and corequisites
Basic literature
Recommended reading
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials Science. An Introduction to Materials in Medicine. 2nd ed., Elsevier Academic press, California USA, London UK. 2004, pp. 851. ISBN: 0-12-582463-7.
Rieger B, Künkel, Coates GW, Reichardt R, Dinjus E, Zevaco TA, volume editors. Synthetic biodegradable polymers. In: Advances in Polymer Science. Springer-Verlag Berlin Heidelberg. 2012; vol. 245, pp. 364. ISSN: 0065-3195
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Biodegradation of polymers, biocompatibility and toxicity - characterization and testing of materials in vitro and in vivo
3. Tissue engineering – principles, methodology, stem cells, interactions of biomaterials with cells, extracellular matrix, drug carriers.
4. Method of scaffold preparation for tissue engineering - lyophilization, 3D printing, electrospinning, solvent casting, foaming, sol-gel, stereolithography, laser sintering, rapid prototyping, etc.
5. General overview of biomaterials and implants for tissue engineering of bone, nervous and cardiovascular system, skin, tendons, cartilage and menisci.
6. Hydrogels in medicine – rheology, crosslinking, mechanical properties, swelling, applications.
7. Biopolymers I – polysaccharides: cellulose, hyaluronic acid, chitosan, alginate, silk fibroin: properties, modification and applications
8. Biopolymers II - polynucleotide substances (RGD), proteins (collagen, fibrin), polyesters (PHB, PHV), isoprenoids: properties, modification and application
9. Synthetic polymers I (non-degradable) - polyacrylates, polyethylene, silicones, polyurethanes, polyethylene terephthalate: mechanical properties and testing for medical applications
10. Synthetic polymers II (biodegradable) – polyesters (PLA, PGA, PCL, PHB)-polycondenzation, ring opening polymerization, block copolymers, sol-gel transition, catalysts, biodegradation, the application
11. Synthetic polymers III (biodegradable)- polyhydroxyalkanoates, polyester carbonates, polyester amides, polyester urethanes, polypropylen fumarates, polyorthoesters, polyanhydrides, polyalkylcyanoacrylates, polyimino carbonates, inorganic polyphosphazenes and inorganic polyphosphoesters
12. Chemical modification of (bio)polymers– response from functional groups, functionalization of synthetic polymers, binding of biologically active agents, crosslinking
13. Composite polymeric materials and their use in medicine - (nano)fibers and (nano)particles filled polymers, a combination of natural and synthetic polymers, ceramics and metallic biomaterials, sterilization of biomaterials. New biomaterials prepared by self-assembly processes.
Guided consultation in combined form of studies
Teacher / Lecturer