Course detail
Introduction to Medical Materials and Their Applications
FCH-BC_UNAcad. year: 2022/2023
The subject is the introduction to principles and medically relevant knowledge of nanotechnology, and the chemistry of modern materials for medical application. The students are familiarized with the structural principles of organs, tissues and cells and the principles of their regulation. The biological reactions of cells and tissues to various types of material and systems built of these materials are discussed. The health risks of materials and their nanoforms are pointed out. The above mentioned is demonstrated on examples of targeted distribution of biologically active materials and their directed releasing, regenerative medicine, tissue engineering and sensors utilisable in diagnostics and medicine. The practical part and comprehensibility are stressed at the introductory level.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Introduction to nanobiotechnology: explanation of terms nanotechnology, biotechnology, nanobiotechnology and nanomedicine. Where they complement each other, where they overlap, examples of real medical applications.
2nd-3rd week:
Biological systems: from organism to cell, cells and tissues, stem cells, cell morphology, cell cycle, cell regulation and signalling, receptors, CD 44 receptor, extracellular matrix, collagen, elastin, proteoglycans and glycoproteins, fibronectin, laminin, integrins, health risks of nanotechnologies.
4th-5th week:
Targeted distribution and directed release of biologically active materials: targeted distribution and directed release – explanation of the terms, what the first carriers brought and what we expect of the modern carriers, what an ideal carrier should be like, carriers‘ separation, micelles and liposomes, nanoparticles, dendrimers, nanotubes, microbubles, nano and microfibers, combined carrier systems, theranostics, directed release of active material from the carrier, the release of active material by electromagnetic radiation, the release of active material by magnetic field, the release of active material by ultrasound, the release of active material by temperature or pH change, carriers reacting to biological stimuli, carriers containing an enzyme substrate in their structure, carriers reacting to substrate in vicinity, barriers between tissues and how to overcome them, therapeutic window, therapeutic index, targeted transport of active material in the cell, ways of releasing active material in the cell.
6th-8th week:
Systems boosting wound healing: various types and states of wounds, acute, chronic and complicated wounds, infected wounds, biofilm, wound healing, homeostasis and coagulation phase, inflammation phase, immunity system, proliferative phase, extracellular matrix and hyaluronan, remodeling phase, necrotic tissue removal, larva therapy, moist healing and hyaluronan, exuding wounds‘ covers, preparations on basis of honey, preparations on basis of glucans, cover for granulating wound, liquid and solid types of wound covers, fistula, epipleural abscess, other types of wound covers, other ways of wound healing.
9th-10th week:
Regenerative medicine: tissue engineering and regenerative medicine, healing and regeneration, stem cells, from stem cell to mature cell, embryology, how stem cells recognize what to become, cell signalling, cell interactions, sources of stem cells, therapeutic cloning, induced pluripotent stem cells, mezenchymal stem cells, bone marrow transplantation.
11th-12th week:
Tissue engineering: scaffolds and cells, hydrogel based scaffolds, spongei based scaffolds, nano and microfiber based scaffolds, scaffold materials, tissue engineering and practical examples, tissue engineering of joint cartilage, materials for synovial fluid viscosupplementation.
13th week:
Biosensors and medicine: what are sensors and biosensors, basic characteristics of sensors, types of biosensors, glucose sensor, Clark oxygen electrode, biosensor separation on the basis of induced reaction principles, piezoelectrical, optical, interferometric, grid sensor, resonance mirror, SPR sensors, evanescence field, surface plasmon, TIRF sensors, sensors based on Raman diffusion, enzyme electrodes, aptamers.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Elearning
Classification of course in study plans
- Programme BPCP_CHCHT Bachelor's
branch BPCO_CHMN , 2 year of study, winter semester, compulsory
- Programme BPCP_CHMA Bachelor's 2 year of study, winter semester, compulsory
Type of course unit
Elearning