Course detail
Radioecology and Nuclear Technologies
FCH-MC_RJTAcad. year: 2021/2022
This course presents to students the question of radionuclide occurence and behaviour in the environment, and the question of the natural and artificial sources of radionuclides and their influence on the human organism.
Also, it includes fundamental definitions and knowledge of nuclear chemistry – basic properties of radionuclides and ionizing radiation, radioactivity and nuclear reactions.
The course deals with practical technologies of radionuclides and ionizing radiation utilization, as nuclear fuel cycle and radioactive waste management.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
1. Students will acquire basic knowledge, principles and definitions related to the issue of radioactive material in the environment
2. Students will be well versed in the issues of the effects of ionizing radiation on the environment
3. Students will be able to objectively evaluate current issues, such as the relationship between nuclear energy and radioactive waste to the environment.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Radioactivity, nuclear transformations and reactions
3. Ionizing radiation and radionuclides in the environment
4. Technology and application of nuclear chemistry
5. Biological effects of ionizing radiation
6. Monitoring of ionizing radiation in the environment
7. Technology of nuclear fuel cycle I – uranium mining
8. Technology of nuclear fuel cycle II – nuclear power plants
9. Technology of nuclear fuel cycle III – spent nuclear fuel treatment
10. Technology of nuclear fuel cycle IV – decommissioning
11. Radioactive waste management I – technology and treatment of low level radioactive waste
12. Radioactive waste management II – technology and treatment of high level radioactive waste
13. Radioactive waste management III – storage and disposal of radioactive waste
Work placements
Aims
They will be familiar with technology and applications of nuclear chemistry.
They will understand the occurrence and effect of ionizing radiation in the environment from both natural and industrial sources.
Students will be well versed in the issue of all parts of nuclear fuel cycle and radioactive waste management.
After completing the course, students should be able to objectively evaluate current issues of radioecology and nuclear technology.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
K. Štamberg: Technologie jaderných paliv I. ČVUT, Praha. 2006. (CS)
K. Štamberg: Technologie jaderných paliv II. ČVUT, Praha. 2017. (CS)
W. D. Loveland, D. J. Morrissey, G. T. Seaborg: Modern Nuclear Chemistry. Wiley, 2017. (EN)
W. E. Lee, M. I. Ojovan, C. M. Jantzen (Eds): Radioative waste management and contaminated site clean-up. Woodhead Publishing, UK, 2013. (EN)
Z. Dlouhý: Nakládání s radioaktivním odpadem a vyhořelým jaderným palivem, Nakladatelství VUTIUM, Brno, 2009. (CS)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Guided consultation in combined form of studies
Teacher / Lecturer
Elearning