Publication detail
ON NON-OSCILLATION FOR TWO DIMENSIONAL SYSTEMS OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS
OPLUŠTIL, Z.
Original Title
ON NON-OSCILLATION FOR TWO DIMENSIONAL SYSTEMS OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS
Type
journal article in Web of Science
Language
English
Original Abstract
The paper studies the non-oscillatory properties of two-dimensional systems of non-linear differential equations u ' = g(t)|v|1/alpha sgn v, v ' = -p(t)|u|(alpha)sgn u, where the functions g: [0, +infinity[-> [0, +infinity[, p: [0, +infinity[-> & Ropf; are locally integrable and alpha > 0. We are especially interested in the case of integral(+infinity)g(s) ds < +infinity. In the paper, new non-oscillation criteria are established. Among others, they generalize well-known results for linear systems as well as second order linear and also half-linear differential equations. The criteria presented complement the results of Hartman-Wintner's type for the system in question.
Keywords
two dimensional system of non-linear differential equations; oscillatory properties
Authors
OPLUŠTIL, Z.
Released
28. 11. 2024
Publisher
UNIV MISKOLC INST MATH
Location
MISKOLC
ISBN
1787-2413
Periodical
Miskolc Mathematical Notes (electronic version)
Year of study
25
Number
2
State
Hungary
Pages from
943
Pages to
954
Pages count
13
URL
BibTex
@article{BUT194057,
author="Zdeněk {Opluštil}",
title="ON NON-OSCILLATION FOR TWO DIMENSIONAL SYSTEMS OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS",
journal="Miskolc Mathematical Notes (electronic version)",
year="2024",
volume="25",
number="2",
pages="943--954",
doi="10.18514/MMN.2024.4420",
issn="1787-2413",
url="https://real.mtak.hu/210795/"
}