Publication detail

A digital 3D Jordan-Brouwer separation theorem

ŠLAPAL, J.

Original Title

A digital 3D Jordan-Brouwer separation theorem

Type

journal article in Web of Science

Language

English

Original Abstract

We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky

Keywords

Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.

Authors

ŠLAPAL, J.

Released

25. 10. 2024

Publisher

Ovidius University Constanta

Location

Constanta

ISBN

1224-1784

Periodical

Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica

Year of study

32

Number

3

State

Romania

Pages from

161

Pages to

172

Pages count

10

URL

BibTex

@article{BUT190036,
  author="Josef {Šlapal}",
  title="A digital 3D Jordan-Brouwer separation theorem",
  journal="Analele Stiintifice Ale Universitatii  Ovidius Constanta, Seria Matematica",
  year="2024",
  volume="32",
  number="3",
  pages="161--172",
  doi="10.2478/auom-2024-0034",
  issn="1224-1784",
  url="https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf"
}