Publication detail
Atmospheric Pressure Microwave Plasma Jet for Organic Thin Film Deposition
NARIMISA, M. KRČMA, F. ONYSHCHENKO, Y. KOZÁKOVÁ, Z. MORENT, R. DE GEYTER, N.
Original Title
Atmospheric Pressure Microwave Plasma Jet for Organic Thin Film Deposition
Type
journal article in Web of Science
Language
English
Original Abstract
In this work, the potential of a microwave (MW)‐induced atmospheric pressure plasma jet (APPJ) in film deposition of styrene and methyl methacrylate (MMA) precursors is investigated. Plasma properties during the deposition and resultant coating characteristics are studied. Optical emission spectroscopy (OES) results indicate a higher degree of monomer dissociation in the APPJ with increasing power and a carrier gas flow rate of up to 250 standard cubic centimeters per minute (sccm). Computational fluid dynamic (CFD) simulations demonstrate non‐uniform monomer distribution near the substrate and the dependency of the deposition area on the monomercontaining gas flow rate. A non‐homogeneous surface morphology and topography of the deposited coatings is also observed using atomic force microscopy (AFM) and SEM. Coating chemical analysis and wettability are studied by XPS and water contact angle (WCA), respectively. A lower monomer flow rate was found to result in a higher C–O/C–C ratio and a higher wettability of the deposited coatings.
Keywords
atmospheric pressure plasma jet (APPJ); microwave (MW) discharge; thin film deposition; optical emission spectroscopy (OES); Comsol MultiPhysics; methyl methacrylate (MMA); styrene
Authors
NARIMISA, M.; KRČMA, F.; ONYSHCHENKO, Y.; KOZÁKOVÁ, Z.; MORENT, R.; DE GEYTER, N.
Released
6. 2. 2020
Publisher
MDPI
Location
Basel
ISBN
2073-4360
Periodical
Polymers
Year of study
12
Number
2
State
Swiss Confederation
Pages from
1
Pages to
23
Pages count
23
URL
Full text in the Digital Library
BibTex
@article{BUT165976,
author="Mehrnoush {Narimisa} and František {Krčma} and Yuliia {Onyshchenko} and Zdenka {Kozáková} and Rino {Morent} and Nathalie {De Geyter}",
title="Atmospheric Pressure Microwave Plasma Jet for Organic Thin Film Deposition
",
journal="Polymers",
year="2020",
volume="12",
number="2",
pages="1--23",
doi="10.3390/polym12020354",
issn="2073-4360",
url="https://www.mdpi.com/2073-4360/12/2/354"
}