Publication detail
Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes
JAMATIA, T. ŠKODA, D. ŠEVČÍK, J. URBÁNEK, P. MAŠLÍK, J. MUNSTER, L. KALINA, L. KUŘITKA, I.
Original Title
Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes
Type
journal article in Web of Science
Language
English
Original Abstract
A one-step microwave-assisted polyol method was used to fabricate FexZn1−xO (x = 0.01, 0.05, 0.10) nanoparticles. Zinc acetate dihydrate, iron (III) acetylacetonate, oleic acid and diethylene glycol were placed in a Teflon-lined reaction vessel. The reaction mixture was heated up to 250 °C for 15 min in a microwave reactor. The surface modification with oleic acid prevented agglomeration of the nanoparticles. The X-ray diffraction analysis revealed characteristics wurtzite hexagonal structure of ZnO and successful incorporation of the Fe dopant into the host crystal lattice. Doping of ZnO by Fe led to bandgap modification as estimated by Tauc plot. The as-prepared nanopowders were dispersed in toluene and mixed with a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer to make stable homogenous dispersions. Then, the FexZn1−xO/MEH-PPV nanocomposite thin films were prepared by spin coating and used as thin active layers in polymer light-emitting diodes. The thickness of deposited FexZn1−xO/MEH-PPV film was ca. 30 nm and that of reference neat MEH-PPV film was ca. 25 nm. The electroluminescent spectroscopy study showed that direct blending of MEH-PPV with Fe-doped ZnO nanoparticles is a simple and effective approach to significantly increase the luminance intensity of the diode in comparison to the diode fabricated by neat MEH-PPV.
Keywords
nanoparticles
Authors
JAMATIA, T.; ŠKODA, D.; ŠEVČÍK, J.; URBÁNEK, P.; MAŠLÍK, J.; MUNSTER, L.; KALINA, L.; KUŘITKA, I.
Released
14. 5. 2019
ISBN
0957-4522
Periodical
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
Year of study
30
Number
12
State
Kingdom of the Netherlands
Pages from
11269
Pages to
11281
Pages count
13
URL
BibTex
@article{BUT157412,
author="Thaiskang {Jamatia} and David {Škoda} and Jakub {Ševčík} and Pavel {Urbánek} and Jan {Mašlík} and Lukáš {Munster} and Lukáš {Kalina} and Ivo {Kuřitka}",
title="Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes",
journal="JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS",
year="2019",
volume="30",
number="12",
pages="11269--11281",
doi="10.1007/s10854-019-01473-z",
issn="0957-4522",
url="https://link.springer.com/article/10.1007%2Fs10854-019-01473-z"
}