Publication detail

Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes

JAMATIA, T. ŠKODA, D. ŠEVČÍK, J. URBÁNEK, P. MAŠLÍK, J. MUNSTER, L. KALINA, L. KUŘITKA, I.

Original Title

Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes

Type

journal article in Web of Science

Language

English

Original Abstract

A one-step microwave-assisted polyol method was used to fabricate FexZn1−xO (x = 0.01, 0.05, 0.10) nanoparticles. Zinc acetate dihydrate, iron (III) acetylacetonate, oleic acid and diethylene glycol were placed in a Teflon-lined reaction vessel. The reaction mixture was heated up to 250 °C for 15 min in a microwave reactor. The surface modification with oleic acid prevented agglomeration of the nanoparticles. The X-ray diffraction analysis revealed characteristics wurtzite hexagonal structure of ZnO and successful incorporation of the Fe dopant into the host crystal lattice. Doping of ZnO by Fe led to bandgap modification as estimated by Tauc plot. The as-prepared nanopowders were dispersed in toluene and mixed with a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer to make stable homogenous dispersions. Then, the FexZn1−xO/MEH-PPV nanocomposite thin films were prepared by spin coating and used as thin active layers in polymer light-emitting diodes. The thickness of deposited FexZn1−xO/MEH-PPV film was ca. 30 nm and that of reference neat MEH-PPV film was ca. 25 nm. The electroluminescent spectroscopy study showed that direct blending of MEH-PPV with Fe-doped ZnO nanoparticles is a simple and effective approach to significantly increase the luminance intensity of the diode in comparison to the diode fabricated by neat MEH-PPV.

Keywords

nanoparticles

Authors

JAMATIA, T.; ŠKODA, D.; ŠEVČÍK, J.; URBÁNEK, P.; MAŠLÍK, J.; MUNSTER, L.; KALINA, L.; KUŘITKA, I.

Released

14. 5. 2019

ISBN

0957-4522

Periodical

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS

Year of study

30

Number

12

State

Kingdom of the Netherlands

Pages from

11269

Pages to

11281

Pages count

13

URL

BibTex

@article{BUT157412,
  author="Thaiskang {Jamatia} and David {Škoda} and Jakub {Ševčík} and Pavel {Urbánek} and Jan {Mašlík} and Lukáš {Munster} and Lukáš {Kalina} and Ivo {Kuřitka}",
  title="Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes",
  journal="JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS",
  year="2019",
  volume="30",
  number="12",
  pages="11269--11281",
  doi="10.1007/s10854-019-01473-z",
  issn="0957-4522",
  url="https://link.springer.com/article/10.1007%2Fs10854-019-01473-z"
}