Detail publikace
Sol gel synthesis of TiO2@ZnO composites for self-cleaning and antimicrobial coating
BRUZL, D. BOCIAN, L. SOKOLA, P. MÁSILKO, J. SEDLAČÍK, M. ŠVEC, J. BARTONÍČKOVÁ, E. ŠOUKAL, F.
Originální název
Sol gel synthesis of TiO2@ZnO composites for self-cleaning and antimicrobial coating
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
In recent years, the development of advanced materials for applications in self-cleaning surfaces and antimicrobial coatings has received considerable attention due to its potential impact on environmental sustainability and public health. Among the emerging materials, metal oxide-based photocatalysts have shown promise in addressing these challenges. In this context, the present study focuses on the promise sol-gel synthesis and potential photocatalytic properties of TiO2@ZnO (x = 0.6 - 0.9) nano-scaled particles, with particular emphasis on their applications in self-cleaning and microbial coatings. The choice of TiO2@ZnO (x = 0.6 - 0.9) as the subject of investigation is driven by the advantageous properties of both titanium dioxide (TiO2) and zinc oxide (ZnO). TiO2 is known for its exceptional photocatalytic activity, while ZnO is known for its antimicrobial properties. By combining these two metal oxides in a controlled manner, we aim to harness their synergistic effects to create a multifunctional material with enhanced performance. A titanium (IV) isopropoxide and zinc acetate dihydrate have been used as precursors for the so-gel process. The synthesised powders were evaluated by X-ray diffraction analysis and Raman spectroscopy to determine the allotropy of TiO2 and possible lattice distortions. The optical band gap (Egap) was evaluated by molecular reflection UV-VIS spectroscopy. In addition, size and morphology were determined by scanning electron microscopy (SEM).
Klíčová slova
Raman spectroscopy; nanoparticles; band gap; XRD
Autoři
BRUZL, D.; BOCIAN, L.; SOKOLA, P.; MÁSILKO, J.; SEDLAČÍK, M.; ŠVEC, J.; BARTONÍČKOVÁ, E.; ŠOUKAL, F.
Vydáno
23. 7. 2024
Nakladatel
Journal of Physics: Conference Series
ISSN
1742-6596
Periodikum
Journal of Physics: Conference Series
Ročník
2793
Číslo
23.7.2024
Stát
Spojené království Velké Británie a Severního Irska
Strany počet
11
URL
BibTex
@article{BUT189210,
author="Dominik {Bruzl} and Luboš {Bocian} and Patrik {Sokola} and Jiří {Másilko} and Martin {Sedlačík} and Jiří {Švec} and Eva {Bartoníčková} and František {Šoukal}",
title="Sol gel synthesis of TiO2@ZnO composites for self-cleaning and antimicrobial coating",
journal="Journal of Physics: Conference Series",
year="2024",
volume="2793",
number="23.7.2024",
pages="11",
doi="10.1088/1742-6596/2792/1/012006",
issn="1742-6596",
url="https://iopscience.iop.org/article/10.1088/1742-6596/2792/1/012006"
}