Detail publikace
Entropy of fractal systems
ZMEŠKAL, O. DZIK, P. VESELÝ, M.
Originální název
Entropy of fractal systems
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The Kolmogorov entropy is an important measure which describes the degree of chaoticity of systems. It gives the average rate of information loss about a position of the phase point on the attractor. Numerically, the Kolmogorov entropy can be estimated as the Rényi entropy. A special case of Rényi entropy is the information theory of Shannon entropy. The product of Shannon entropy and Boltzmann constant is the thermodynamic entropy. Fractal structures are characterized by their fractal dimension. There exists an infinite family of fractal dimensions. A generalized fractal dimension can be defined in an E-dimensional space. The Rényi entropy and generalized fractal dimension are connected by known relation. The calculations of fractal dimensions and entropies for different orders q will be demonstrated with the help of HarFA software application (Harmonic and Fractal image Analyzer), that was developed by one of the authors of this contribution. This software can be used for image analysis as well as for educative purposes.
Klíčová slova
Fractal physics, Fractal geometry, Fractal dimension, Fractal measure, Kolmogorov entropy, Rényi entropy,m Shannon entropy, Thermodynamic entropy
Autoři
ZMEŠKAL, O.; DZIK, P.; VESELÝ, M.
Rok RIV
2013
Vydáno
1. 1. 2013
Nakladatel
Elsevier
Místo
Amsterdam, Holland
ISSN
0898-1221
Periodikum
Computers and Mathematics with Applications
Ročník
65
Číslo
2
Stát
Spojené království Velké Británie a Severního Irska
Strany od
136
Strany do
146
Strany počet
12
BibTex
@article{BUT99164,
author="Oldřich {Zmeškal} and Petr {Dzik} and Michal {Veselý}",
title="Entropy of fractal systems",
journal="Computers and Mathematics with Applications",
year="2013",
volume="65",
number="2",
pages="136--146",
doi="10.1016/j.camwa.2013.01.017",
issn="0898-1221"
}