Detail publikačního výsledku
Multiple wave scattering on a bordered crystal. Translation symmetry breaking and forbidden reflections
DUB, P.; LITZMAN, O.
Originální název
Multiple wave scattering on a bordered crystal. Translation symmetry breaking and forbidden reflections
Anglický název
Multiple wave scattering on a bordered crystal. Translation symmetry breaking and forbidden reflections
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
The interaction of a scalar wave (thermal neutrons) with a single Si crystal is treated using Ewald's self-consistent field method. Considering from the very beginning the two-dimensional translation symmetry of the problem, the reflectivities of allowed and forbidden reflections in the Bragg geometry valid for both coplanar and non-coplanar cases are derived. It is shown that there exists a very narrow reflectivity peak of the forbidden reflection as a result of the symmetry breaking due to a crystal surface.
Anglický abstrakt
The interaction of a scalar wave (thermal neutrons) with a single Si crystal is treated using Ewald's self-consistent field method. Considering from the very beginning the two-dimensional translation symmetry of the problem, the reflectivities of allowed and forbidden reflections in the Bragg geometry valid for both coplanar and non-coplanar cases are derived. It is shown that there exists a very narrow reflectivity peak of the forbidden reflection as a result of the symmetry breaking due to a crystal surface.
Klíčová slova
dynamical diffraction theory; forbidden reflections.
Klíčová slova v angličtině
dynamical diffraction theory; forbidden reflections.
Autoři
DUB, P.; LITZMAN, O.
Rok RIV
2013
Vydáno
31.05.2012
ISSN
0108-7673
Periodikum
Acta Crystallographica
Svazek
68
Číslo
4
Stát
Dánské království
Strany od
494
Strany do
504
Strany počet
11
BibTex
@article{BUT91972,
author="Petr {Dub} and Otto {Litzman}",
title="Multiple wave scattering on a bordered crystal. Translation symmetry breaking and forbidden reflections",
journal="Acta Crystallographica",
year="2012",
volume="68",
number="4",
pages="494--504",
issn="0108-7673"
}