Detail publikace

Positive periodic solutions to super-linear second-order ODEs

ŠREMR, J.

Originální název

Positive periodic solutions to super-linear second-order ODEs

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We study the existence and uniqueness of a positive solution to the problemu ''=p(t)u+q(t,u)u+f(t);u(0)=u(omega),u '(0)=u '(omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u<^>{\prime \prime }} = p(t)u + q(t,u)u + f(t);\,\,\,\,\,u(0) = u(\omega ),\,\,\,{u<^>\prime }(0) = {u<^>\prime }(\omega )$$\end{document}with a super-linear nonlinearity and a nontrivial forcing term f. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.

Klíčová slova

second-order differential equation; super-linearity; positive solution; existence; uniqueness

Autoři

ŠREMR, J.

Vydáno

1. 3. 2025

Nakladatel

SPRINGER HEIDELBERG

Místo

HEIDELBERG

ISSN

0011-4642

Periodikum

Czechoslovak Mathematical Journal

Ročník

75

Číslo

1

Stát

Česká republika

Strany od

257

Strany do

275

Strany počet

19

URL

BibTex

@article{BUT197721,
  author="Jiří {Šremr}",
  title="Positive periodic solutions to super-linear second-order ODEs",
  journal="Czechoslovak Mathematical Journal",
  year="2025",
  volume="75",
  number="1",
  pages="257--275",
  doi="10.21136/CMJ.2024.0128-23",
  issn="0011-4642",
  url="https://link.springer.com/article/10.21136/CMJ.2024.0128-23"
}