Detail publikace
On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point
ŠREMR, J.
Originální název
On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We discuss Lyapunov stability/instability of both lower and upper equilibria of free damped pendulum with periodically oscillating suspension point. We recall the results of Bogolyubov and Kapitza, provide new effective criteria of stability/instability of the equilibria of pendulum equation, and give the exact and complete proofs. The criteria obtained are formulated in terms of positivity/negativity of Green's functions of the periodic boundary value problems for linearized equations. Furthermore, we show that if both lower and upper equilibria are stable, then the pendulum considered may possess a periodic motion that corresponds to the "quasistatic solution" of Bogolyubov as well as to the "quasistatic balance" of Kapitza.
Klíčová slova
second-order nonlinear differential equation; stability; instability; Floquet multiplier; Lyapunov exponent; periodic solution
Autoři
ŠREMR, J.
Vydáno
3. 2. 2025
Nakladatel
SPRINGERNATURE
Místo
LONDON
ISSN
0862-7940
Periodikum
APPLICATIONS OF MATHEMATICS
Ročník
70
Číslo
1
Stát
Česká republika
Strany od
11
Strany do
45
Strany počet
35
URL
BibTex
@article{BUT197361,
author="Jiří {Šremr}",
title="On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point",
journal="APPLICATIONS OF MATHEMATICS",
year="2025",
volume="70",
number="1",
pages="11--45",
doi="10.21136/AM.2025.0206-24",
issn="0862-7940",
url="https://link.springer.com/article/10.21136/AM.2025.0206-24"
}