Detail publikace
Advances in low cycle fatigue probabilistic modeling
CANTELI, A. CASTILLO, E., DÍAZ-SALAMANCA, D., MUNIZ-CALVENTE, M., SEITL, S.
Originální název
Advances in low cycle fatigue probabilistic modeling
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
New advances in the probabilistic S-N model proposed by Castillo and Canteli are presented. The requirements for a S-N model derivation to be valid are emphasized, in particular, that of the compatibility between the statistical distributions of lifetime and stress reference variable. The definition of the generalized reference variable (GRV) in the S-N field, as GRV = psi & sdot;sigma M, where psi is a non-dimensional factor derived from the sigma - epsilon law of the material, allows the former model to be applied to LCF data. The new model ensures the incontrovertible and unitary definition of the scatter band in the S-N field and the justification of an asymptotic lower limit of the lifetime, N0. As a result, the stress- and strain-based approaches can be envisaged as a unique probabilistic psi sigma M -N approach applicable in the three conventional, i.e., LCF, HCF and VHCF domains. An extension as the psi sigma M -R -N model that includes the stress ratio effect is presented. The utility of the model is confirmed with the assessment of LCF data from different external experimental campaigns.
Klíčová slova
S -N model; Low cycle Fatigue (LCF); Probabilistic assessment; Generalized reference variable (GRV); psi non-dimensional factor; Experimental validation
Autoři
CANTELI, A.; CASTILLO, E., DÍAZ-SALAMANCA, D., MUNIZ-CALVENTE, M., SEITL, S.
Vydáno
7. 8. 2024
Nakladatel
ELSEVIER
Místo
AMSTERDAM
ISSN
0167-8442
Periodikum
Theoretical and Applied Fracture Mechanics
Ročník
133
Číslo
8
Stát
Nizozemsko
Strany od
1
Strany do
16
Strany počet
16
URL
BibTex
@article{BUT193654,
author="Alfonso Fernández {Canteli} and Enrique {Castillo} and Diego {DÍAZ-SALAMANCA} and Miguel {Muňiz-Calvente} and Stanislav {Seitl}",
title="Advances in low cycle fatigue probabilistic modeling",
journal="Theoretical and Applied Fracture Mechanics",
year="2024",
volume="133",
number="8",
pages="1--16",
doi="10.1016/j.tafmec.2024.104611",
issn="0167-8442",
url="https://www.sciencedirect.com/science/article/pii/S0167844224003616?via%3Dihub"
}