Detail publikace

Quantum Register Algebra: The Basic Concepts

HRDINA, J. VAŠÍK, P. NÁVRAT, A. ERYGANOV, I. ALVES, R. HILDENBRAND, D. STEINMETZ, C. LAVOR, C.

Originální název

Quantum Register Algebra: The Basic Concepts

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

We introduce Quantum Register Algebra (QRA) as an efficient tool for quantum computing. We show the direct link between QRA and Dirac formalism. We present GAALOP (Geometric Algebra Algorithms Optimizer) implementation of our approach. Using the QRA basis vectors definitions given in Sect. 4 and the framework based on the de Witt basis presented in Sect. 5, we are able to fully describe and compute with QRA in GAALOP using the geometric product. We illustrate the intuitiveness of this computation by presenting the QRA form for the well known SWAP operation on a two qubit register.

Klíčová slova

quantum computing; geometric algebra; quantum register algebra

Autoři

HRDINA, J.; VAŠÍK, P.; NÁVRAT, A.; ERYGANOV, I.; ALVES, R.; HILDENBRAND, D.; STEINMETZ, C.; LAVOR, C.

Vydáno

8. 5. 2024

Nakladatel

SPRINGER INTERNATIONAL PUBLISHING AG

Místo

CHAM

ISBN

978-3-031-34030-7

Kniha

Advanced Computational Applications of Geometric Algebra

Strany od

112

Strany do

122

Strany počet

11

BibTex

@inproceedings{BUT188578,
  author="Jaroslav {Hrdina} and Petr {Vašík} and Aleš {Návrat} and Ivan {Eryganov} and Rafael {Alves} and Dietmar {Hildenbrand} and Christian {Steinmetz} and Carlile C. {Lavor}",
  title="Quantum Register Algebra: The Basic Concepts",
  booktitle="Advanced Computational Applications of Geometric Algebra",
  year="2024",
  volume="13771",
  pages="112--122",
  publisher="SPRINGER INTERNATIONAL PUBLISHING AG",
  address="CHAM",
  doi="10.1007/978-3-031-34031-4\{_}10",
  isbn="978-3-031-34030-7"
}