Detail publikace
Quantum Register Algebra: The Basic Concepts
HRDINA, J. VAŠÍK, P. NÁVRAT, A. ERYGANOV, I. ALVES, R. HILDENBRAND, D. STEINMETZ, C. LAVOR, C.
Originální název
Quantum Register Algebra: The Basic Concepts
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We introduce Quantum Register Algebra (QRA) as an efficient tool for quantum computing. We show the direct link between QRA and Dirac formalism. We present GAALOP (Geometric Algebra Algorithms Optimizer) implementation of our approach. Using the QRA basis vectors definitions given in Sect. 4 and the framework based on the de Witt basis presented in Sect. 5, we are able to fully describe and compute with QRA in GAALOP using the geometric product. We illustrate the intuitiveness of this computation by presenting the QRA form for the well known SWAP operation on a two qubit register.
Klíčová slova
quantum computing; geometric algebra; quantum register algebra
Autoři
HRDINA, J.; VAŠÍK, P.; NÁVRAT, A.; ERYGANOV, I.; ALVES, R.; HILDENBRAND, D.; STEINMETZ, C.; LAVOR, C.
Vydáno
8. 5. 2024
Nakladatel
SPRINGER INTERNATIONAL PUBLISHING AG
Místo
CHAM
ISBN
978-3-031-34030-7
Kniha
Advanced Computational Applications of Geometric Algebra
Strany od
112
Strany do
122
Strany počet
11
BibTex
@inproceedings{BUT188578,
author="Jaroslav {Hrdina} and Petr {Vašík} and Aleš {Návrat} and Ivan {Eryganov} and Rafael {Alves} and Dietmar {Hildenbrand} and Christian {Steinmetz} and Carlile C. {Lavor}",
title="Quantum Register Algebra: The Basic Concepts",
booktitle="Advanced Computational Applications of Geometric Algebra",
year="2024",
volume="13771",
pages="112--122",
publisher="SPRINGER INTERNATIONAL PUBLISHING AG",
address="CHAM",
doi="10.1007/978-3-031-34031-4\{_}10",
isbn="978-3-031-34030-7"
}