Detail publikace
Distributivity of a segmentation lattice
PAVLÍK, J.
Originální název
Distributivity of a segmentation lattice
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Closure spaces, namely the finite ones, with closed singletons are studied on the level of segmentations - partitions of the space into closed subsets. Segmentations form a lattice and we study spaces for which this lattice is distributive. Studying these spaces may help understanding mathematical background for segmentation of a digital image. A crucial notion is that of connectively irreducible sets which can be defined in any finite closure space. The paper provides several equivalent conditions for segmentational distributivity in terms of triples of closed sets, connected systems of closed sets, property of induced closure operator on down-sets of connectively irreducible sets, and finally by restriction (or disability) of existence of certain sublattices.& COPY; 2023 Elsevier B.V. All rights reserved.
Klíčová slova
Segmentation; Closure space; Distributive lattice
Autoři
PAVLÍK, J.
Vydáno
15. 11. 2023
Nakladatel
ELSEVIER
Místo
AMSTERDAM
ISSN
0166-218X
Periodikum
Discrete Applied Mathematics
Ročník
339
Číslo
0166-218X
Stát
Nizozemsko
Strany od
300
Strany do
316
Strany počet
17
URL
BibTex
@article{BUT186835,
author="Jan {Pavlík}",
title="Distributivity of a segmentation lattice",
journal="Discrete Applied Mathematics",
year="2023",
volume="339",
number="0166-218X",
pages="300--316",
doi="10.1016/j.dam.2023.06.028",
issn="0166-218X",
url="https://doi.org/10.1016/j.dam.2023.06.028"
}