Detail publikace
On decaying and asymptotically constant solutions of nonlinear equations with the Weyl fractional derivative of an order in (1,2)
ŘEHÁK, P.
Originální název
On decaying and asymptotically constant solutions of nonlinear equations with the Weyl fractional derivative of an order in (1,2)
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider a sublinear fractional differential equation of an order in the interval (1,2) where the fractional derivative is of the Weyl type. Existence and asymptotic behavior of decaying and asymptotically constant positive solutions is studied. We mainly deal with regularly varying coefficients and/or solutions, but we also allow a more general setting. Our results are sharp and in the special case where the coefficient in the equation is asymptotically equivalent to a power function and the order of the equation is 2 we get back known results. An important role in the proofs is played by the fractional Karamata integration theorem and other properties of regularly varying functions, fixed point principle, and generalized fractional L'Hospital rule.& COPY; 2023 Elsevier Ltd. All rights reserved.
Klíčová slova
Sublinear fractional differential; equation; Weyl fractional integral; Decaying solution; Regularly varying function; Karamata theorem; Asymptotic formula
Autoři
ŘEHÁK, P.
Vydáno
6. 11. 2023
Nakladatel
PERGAMON-ELSEVIER SCIENCE LTD
Místo
OXFORD
ISSN
0893-9659
Periodikum
APPLIED MATHEMATICS LETTERS
Ročník
145
Číslo
108779
Stát
Spojené státy americké
Strany od
1
Strany do
9
Strany počet
9
URL
BibTex
@article{BUT185079,
author="Pavel {Řehák}",
title="On decaying and asymptotically constant solutions of nonlinear equations with the Weyl fractional derivative of an order in (1,2)",
journal="APPLIED MATHEMATICS LETTERS",
year="2023",
volume="145",
number="108779",
pages="1--9",
doi="10.1016/j.aml.2023.108779",
issn="0893-9659",
url="https://www.sciencedirect.com/science/article/pii/S0893965923002112"
}