Detail publikace
Transitive quasi-uniform structures depending on a parameter
IRAGI, M., ŠLAPAL, J.
Originální název
Transitive quasi-uniform structures depending on a parameter
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In a category C with an (E,M)-factorization structure for morphisms, we prove that any subclass N of M which is closed under pullbacks determines a transitive quasi-uniform structure on C. In addition to providing a categorical characterization of all transitive quasiuniform structures compatible with a topology, this result also permits us to establish a number of Galois connections related to quasi-uniform structures on C. These Galois connections lead to the description of subcategories of C determined by quasi-uniform structures. Several examples considered at the end of the paper illustrate our results.
Klíčová slova
Closure operator, Quasi-uniform structure, Syntopogenous structure, Galois connection, Interior operator.
Autoři
IRAGI, M., ŠLAPAL, J.
Vydáno
10. 8. 2023
Nakladatel
Springer
Místo
Basel
ISSN
0001-9054
Periodikum
AEQUATIONES MATHEMATICAE
Ročník
97
Číslo
4
Stát
Švýcarská konfederace
Strany od
823
Strany do
836
Strany počet
14
URL
BibTex
@article{BUT183729,
author="Josef {Šlapal} and Minani {Iragi}",
title="Transitive quasi-uniform structures depending on a parameter",
journal="AEQUATIONES MATHEMATICAE",
year="2023",
volume="97",
number="4",
pages="823--836",
doi="10.1007/s00010-022-00937-8",
issn="0001-9054",
url="https://link.springer.com/article/10.1007/s00010-022-00937-8"
}