Detail publikace
On Weil like functors on flag vector bundles with given length
DOUPOVEC, M. KUREK, J. MIKULSKI, W.
Originální název
On Weil like functors on flag vector bundles with given length
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Let kappa >= 2 be a fixed natural number. The complete description is given of the product preserving gauge bundle functors F on the category F kappa VB of flag vector bundles K = (K; K1, ... , K kappa) of length kappa in terms of the systems I = (I1, ... , I kappa-1) of A-module homomorphisms Ii : Vi+1 -> Vi for Weil algebras A and finite dimensional (over R) A-modules V1, ... , V kappa. The so called iteration problem is investigated. The natural affinors on FK are classified. The gauge-natural operators C lifting kappa-flag-linear (i.e. with the flow in F kappa VB) vector fields X on K to vector fields C(X) on FK are completely described. The concept of the complete lift F phi of a kappa-flag-linear semi-basic tangent valued p-form phi on K is introduced. That the complete lift F phi preserves the Fro center dot licher-Nijenhuis bracket is deduced. The obtained results are applied to study prolongation and torsion of kappa-flag-linear connections.
Klíčová slova
product preserving gauge bundle functor;natural transformation;Weil algebra;flag-linear vector bundle;flag-linear semi-basic tangent valued p-form;complete lifting;Fro?licher-Nijenhuis bracket;flag-linear connection
Autoři
DOUPOVEC, M.; KUREK, J.; MIKULSKI, W.
Vydáno
31. 3. 2023
Nakladatel
Faculty of Sciences and Mathematics, University of Niš, Serbia
Místo
Serbia
ISSN
0354-5180
Periodikum
FILOMAT
Ročník
37
Číslo
9
Stát
Srbská republika
Strany od
2755
Strany do
2771
Strany počet
17
URL
BibTex
@article{BUT183286,
author="Miroslav {Doupovec} and Jan {Kurek} and Wlodzimierz {Mikulski}",
title="On Weil like functors on flag vector bundles with given length",
journal="FILOMAT",
year="2023",
volume="37",
number="9",
pages="2755--2771",
doi="10.2298/FIL2309755D",
issn="0354-5180",
url="https://www.pmf.ni.ac.rs/filomat-content/2023/37-9/37-9-9-18390.pdf"
}