Detail publikace
Analyzing the effectiveness of dynamic network slicing procedure in 5g network by queuing and simulation models
KOCHETKOVA, I. VLASKINA, A. BURTSEVA, S. SAVICH, V. HOŠEK, J.
Originální název
Analyzing the effectiveness of dynamic network slicing procedure in 5g network by queuing and simulation models
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we propose three metrics that could be used for accessing the effectiveness of a dynamic Network Slicing. On the one hand re-slicing could result in more adaptive resource allocation for different virtual network operators (VNO), but could arise the signaling overhead. On the other hand an insufficient amount of re-slicing could significantly decrease the quality of service for VNO users, but reduce the signaling delays. Proposed metrics could be used for analyzing the abovementioned effect. We illustrate the metrics by the simulation model for a simple dynamic network slicing algorithm. We also propose a queuing system approach for analyzing dynamic network slicing for 2 VNOs.
Klíčová slova
Dynamic system; Efficiency indicators; Impatient elastic traffic; Two-service QS
Autoři
KOCHETKOVA, I.; VLASKINA, A.; BURTSEVA, S.; SAVICH, V.; HOŠEK, J.
Vydáno
30. 12. 2020
Nakladatel
Springer
Místo
Švýcarsko
ISBN
9783030657253
Kniha
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
Strany od
71
Strany do
85
Strany počet
15
URL
BibTex
@inproceedings{BUT177424,
author="Irina {Kochetkova} and Anastasia {Vlaskina} and Sofia {Burtseva} and Valeria {Savich} and Jiří {Hošek}",
title="Analyzing the effectiveness of dynamic network slicing procedure in 5g network by queuing and simulation models",
booktitle="Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics",
year="2020",
pages="71--85",
publisher="Springer",
address="Švýcarsko",
doi="10.1007/978-3-030-65726-0\{_}7",
isbn="9783030657253",
url="https://link.springer.com/content/pdf/10.1007/978-3-030-65726-0.pdf"
}